SpectralLDA-TensorSpark (homepage)
Quick summary: This code implements a spectral (third order tensor decomposition) learning method for learning LDA topic model on Spark.
@FurongHuang / (1)
This package can be used for learning topic models and any other exchangeable latent variable models.
Tags
How to
Include this package in your Spark Applications using:
spark-shell, pyspark, or spark-submit
> $SPARK_HOME/bin/spark-shell --packages FurongHuang:SpectralLDA-TensorSpark:1.0
sbt
If you use the sbt-spark-package plugin, in your sbt build file, add:
spDependencies += "FurongHuang/SpectralLDA-TensorSpark:1.0"
Otherwise,
resolvers += "Spark Packages Repo" at "https://repos.spark-packages.org/" libraryDependencies += "FurongHuang" % "SpectralLDA-TensorSpark" % "1.0"
Maven
In your pom.xml, add:<dependencies> <!-- list of dependencies --> <dependency> <groupId>FurongHuang</groupId> <artifactId>SpectralLDA-TensorSpark</artifactId> <version>1.0</version> </dependency> </dependencies> <repositories> <!-- list of other repositories --> <repository> <id>SparkPackagesRepo</id> <url>https://repos.spark-packages.org/</url> </repository> </repositories>
Releases
Version: 1.0 ( 7007a7 | zip | jar ) / Date: 2016-12-04 / License: Apache-2.0 / Scala version: 2.11