spark-FM-parallelSGD (homepage)
Implementation of Factorization Machines on Spark using parallel stochastic gradient descent (python and scala)
@blebreton / (1)
Factorization Machines is a smart general predictor introduced by Rendle in 2010, which can capture all single and pairwise interactions in a dataset. It can be applied to any real valued feature vector and also performs well on highly sparse data. An extension on FMs, namely Field Factorization Machines, proved to be a successful method in predicting advertisement clicks in the Display Advertising Challenge on Kaggle.
I built a custom Spark implementation to use in Python and Scala. To make optimum use of parallel computing in Spark, I implemented Parallel Stochastic Gradient Descent to train the FMs. This forms an alternative to Mini-batch SGD, which is currently available in MLLib to train Logistic Regression models.
This implementation shows impressive results in terms of speed and effectivness.
Tags
How to
This package doesn't have any releases published in the Spark Packages repo, or with maven coordinates supplied. You may have to build this package from source, or it may simply be a script. To use this Spark Package, please follow the instructions in the README.
Releases
No releases yet.