spark-logfac (homepage)
Logistic Matrix Factorization over Spark
@ezamyatin / (1)
The package contains highly scalable matrix factorization algorithms with a logistic loss function: LMF and Item2Vec
Tags
How to
Include this package in your Spark Applications using:
spark-shell, pyspark, or spark-submit
> $SPARK_HOME/bin/spark-shell --packages ezamyatin:spark-logfac:0.1.0
sbt
If you use the sbt-spark-package plugin, in your sbt build file, add:
spDependencies += "ezamyatin/spark-logfac:0.1.0"
Otherwise,
resolvers += "Spark Packages Repo" at "https://repos.spark-packages.org/" libraryDependencies += "ezamyatin" % "spark-logfac" % "0.1.0"
Maven
In your pom.xml, add:<dependencies>
<!-- list of dependencies -->
<dependency>
<groupId>ezamyatin</groupId>
<artifactId>spark-logfac</artifactId>
<version>0.1.0</version>
</dependency>
</dependencies>
<repositories>
<!-- list of other repositories -->
<repository>
<id>SparkPackagesRepo</id>
<url>https://repos.spark-packages.org/</url>
</repository>
</repositories>
Releases
Version: 0.1.0 ( 2a4b1b | zip | jar ) / Date: 2024-12-07 / License: Apache-2.0 / Scala version: 2.12